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Introduction

Matrix Multiplication as Composition of Transformations
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QR Decomposition (QU) (Factorization)

Theorem

if AeR™ ™ has linearly independent columns then it can be factored as
A=0R

Q-factor
QQ is m x n with orthonormal columns (Q7Q = I)

Q If A is square (m = n), then Q is orthogonal (QTQ = QQT =1)

R-factor

O R is nx n, upper triangular, with nonzero diagonal elements
QO R is nonsingular (diagonal elements are nonzero)
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QR Decomposition

Example
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QR Decomposition

0 A QR decomposition can be created for any matrix — it need not
be square and it need not have full rank.

0 Every matrix has a QR—-decomposition, though R may not always
be invertible.
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Schur Triangularization

Theorem

Suppose A € M,,(C). There exists a unitary matrix U € M,,(C) and an upper triangular matrix

T € M,,(C) such that
A=UTU".

Schur triangularization are highly non-unique

Example

Compute a Schur triangularization of the following matrices:

o2

2 A_-S 4]
1 2 2

b) B=|2 1 2
3 -3 4
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Schur Triangularization

Important Note

Matrix

A = ll —2

has no real eigenvalues and thus no real Schur triangularization (since the diagonal entries of its triangularization T
necessarily have the same eigenvalues as A). However, it does have a complex Schur triangularization:

A =UTU", where

g L[V2a+d 144 [l\/— 3 — i
el vz -2 RE ~iv2]
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Review

Diagonal Matrix: Stretching each axis differently
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Spectral Decomposition (complex and real)

Theorem

Suppose A € M,,(C). Then there exists a unitary matrix U € M,,(C) and diagonal matrix D € M,,(C)
such that

A=UDU".
if and only if 4 is normal (i.e., A*A = AA").

Theorem

Suppose A € M, (R). Then there exists a unitary matrix U € M,,(R) and diagonal matrix D € M,,(R) such that

A=UDUT.

if and only if A is symmetric (i.e., A = AT).
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Spectral Decomposition (complex)
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Spectral Decomposition (Real)

S=Q A QT

Diagonal
stretchine Orthogonal

Orthogonal
rotation

rotation
3




Visualization of Spectral Decomposition




Important Note

o Spectral Decomposition is nice and pretty, but
with loss of generality:

Real Field: For square and symmetric matrices!
Complex Field: For square and normal matrices!

For General?? SVDIlI
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Think with spectral decomposition

Normal Matrices have Orthogonal Eigenspaces

Theorem

Suppose A € M,,(C) is normal. If v, w € C™ are eigenvectors of A corresponding to different

eigenvalues then v.w = 0.
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LU—factorization for square matrix

O Review: Gaussian Elimination, row operations are used to change the coefficient

matrix to an upper triangular matrix.

O LU Decomposition is very useful when we have large matrices n X n and if we use

gauss—jordan or the other methods, we can get errors.

Definition
A factorization of a square matrix A4 as
A=LU

where L is lower triangular and U is upper triangular, is called an LU — decomposition (or LU

— factorization) of A.
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Method of LU Factorization

Important

1) Rewrite the system Ax =b as LUx = b

2) Define a new n X 1 matrix y by Ux =y

3) Use Ux =y to rewrite LUx = b as Ly = b and solve the system for y
4) Substitute y in Ux = y and solve for x.

Solve Ax = b
A 3 - S
o :o
X\ Soy »n_— b
~. g =9 __-
2hve Ux = sotve L1 2>
Sad § e
y
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Constructing LU Factorization

Important

1) Reduce A to a REF form U by Gaussian elimination without row exchanges, keeping track of the

multipliers used to introduce the leading 1s and multipliers used to introduce the zeros below the

leading 1s

2) In each position along the main diagonal of L place the reciprocal of the multiplier that introduced

the leading 1 in that position in U

3) In each position below the main diagonal of L place negative of the multiplier used to introduce the

zero in that position in U

4) Form the decomposition A = LU
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Constructing LU Factorization

Example
6 —2 0 [« 0 O
6 -2 0 A=19 —1 1 e ¢ 0 a denotes‘anunknown
A= [9 —1 1] 3 7 5 : . o . entry of L.
3 7 5 @ = % 0- « multiplier = 3 6 0 0
9 -1 1 c 0
3 7 5l S
1 -1 ol [6 0 0]
3 L]
@ 2 1|+ multiplier = —9 3 0
@ 8 5| < multiplier = —3 ) ¢
1 -5 0] 6 0 0]
0 @ % « multiplier = 1 9 2 0
0 8 5l (3 e el
1 -3 0 6 0 0]
0 1 = 9 2 0
10 @ ‘i_ « multiplier = —8 -3 8 L
[1 -1 0] 6 0 (] | Noactual operation is
3 L=19 2 o performed here since
U=lo 1 % - there is already a leading
0 0 @ — multiplier =1 -3 8 1- 1 in the third row. 6 O 0 1 _ % 0
Thus, we have constructed LU — decomposition: A=LU= [9 2 0] o 1 1
3 1 2
0 0 1
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LU—factorization for non—square matrix

3 4 3 4 1 00

-5 3 u=0 Z,1="3 1 0
5 8

5 4 0 0 3 % 1
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LU Numerical notes

Note

The following operation counts apply to an n X n dense matrix A (with most entries nonzero) for n moderately large,

say, n = 30.

1. Computing an LU factorization of A takes about 2n3/3 flops (about the same as row reducing [A Db]), whereas
finding A~! requires about 2n3 flops.

2. Solving Ly = b and Ux = y requires about 2n? flops, because any n X n triangular system can be solved in about
n? flops.

3. Multiplication of b by A~1 also requires about 2n? flops, but the result may not be as accurate as that obtained
from L and U (because of roundoff error when computing both A=1 and A~ 1b).

4. If A is sparse (with mostly zero entries), then L and U may be sparse, too, whereas A~ is likely to be dense. In

this case, a solution of AX = b with an LU factorization is much faster than using A™1.
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Some Notes

Note

O Sometimes it is impossible to write a matrix in the form “lower triangular” X “upper triangular”.

L  Aninvertible matrix A has an LU decomposition provided that all upper left determinants are non—

zero |INER

If A is invertible, then it admits an LU (or LDU) factorization if and only if all its leading
principal minors are non—zero.

If A is a singular matrix of rank k, then it admits an LU factorization if the first k leading
principal minors are non—zero
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Solution (Hide Slide)

We show by induction that every m x 7 matrix A with nonsingular leading principal minors has a

factorization A = LU where L is strictly lower triangular, U is upper triangular, and L and U are
both nonsingular. (This statement, as you show, is an if-and-only-if.)

The 1 x 1 base case is just factoring @ = 1 - a. To induct, write your 72 x 1 matrix A as a leading
principal (1 — 1) x (n — 1) matrix A’ and some leftover entries:

By the inductive hypothesis (since all leading principal minors of A’ are also leading principal
miners of A), A" has an LU factorization as A' = L'U’ with nonsingular L', U’. We want to use
this to make the factorization

worlk, by picking appropriate Z, 7, and z.
By doing the block multiplication, we get four equations.

T
« Wehave A’ = L'U" + 00 , which we know s true, so that's done.

« We have b = L'§ + 0z, so we want to set § — L' 'b. Fortunately that's possible since L' is
invertible.

- = =T = - .- - .. B
e Wehave @' =Z U’ +0 ,sowewanttosetd' =& U’ !, This is possible since U" is also
invertible.

+ Wehaved = &3 + 2,s0 wewanttoset z = d — &' §j.
For future inductive steps, we also want to know that the resulting matrices Land U/ are
nonsingular. This is immediate for I, sinee its diagonal is 1; for U, it's not abvious how to check
that the value of z we get is nonzerc. But once we have A — LU where A and L are nonsingular,
we know that I/ — L * A is nonsingular.

There are also LU factorizations out there for which I is singular (some of the diagonal entries of

[ are zero). For these, there is not an if-and-only-if condition this nice.

You can see from the above proof, for instance, that if A is passibly singular but all of its proper
leading principal minors are still nonsingular, then we get a factorization A = LU in which the
bottom right entry is possibly 0. (This is because arguing z # 0is the only place where e needed
Ao be nonsingular.)
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In general, any square matrix A, v, could have one of the following:

1. a unique LU factorization (as mentioned above);
2. infinitely many LU factorizations if two or more of any first (n—1) columns are linearly dependent or any of the first (n—-1)

columns are 0;
3. no LU factorization if the first (n—1) columns are non-zero and linearly independent and at least one leading principal minor is

zero.
In Case 3, one can approximate an LU factorization by changing a diagonal entry a;; to a;; =& € to avoid a zero leading principal

minor.[1°]
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PLU Factorization

Theorem

if Ais n X n and nonsingular, then it can be factored as

A=PLU

P is a permutation matrix, L is unit lower triangular, U is upper triangular
U not unique; there may be several possible choices for P,L, U
QO interpretation: permute the rows of A and factor PTA as PTA = LU

O also known as Gaussian elimination with partial pivoting (GEPP)

0 Is it unique??

Example

0 55 0 0 1 016 8
2 90 0 1 0 1/3 1 0110 19/3
6 8 8 1 00 15/19 1110 0

O we will skip the details of calculating P, L, U
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Cholesky Factorization

Important
Every positive definite matrix 4 e R®*™ can be factored as
A=R'R

where R is upper triangular with positive diagonal elements

0 complexity of computing R is (1/3)n3 flops
U Ris called the Cholesky factor of A
O can be interpreted as “square root” of a positive definite matrix

U gives a practical method for testing positive definiteness
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Cholesky factorization algorithm

Example

[ All A1,2:n ] _ [ R11 0 ] [Rll R1,2:n ]

T T
R1,2:n RZ:n,Z:n 0 RZ:n,Z:n

AZ:n,l A2:n,2:n

2
_ [ RT3 Ri1R1 2. ]
= T T T

Ri1R12:n RizmRizm + Romo2nRomom

1. compute first row of R:

1
Ry, = \/A11» Rz = R_MA1,2:n Allo \
P

if A is positive definite

AZ:n,lAT /

2. compute 2, 2 block R;., 5., from

T — pT —
AZ:n,Z:n - R1,2:nR1,2:n - RZ:n,Z:nRZ:n,Z:n ] AZ:n,Z:n - A

this is a Cholesky factorization of order n — 1
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Cholesky factorization algorithm

Example

25 15 _5 R11 O 0 —Rll
15 18 0 |=|Ri2 Ry, O 0
-5 0 11 Riz Rz Rs3|| 0

Q first row of R

15 18 0 3 Ry; 0 {(]0
-5 0 11 —1 Ry3 Rs3(|0

S Y [ERE I

[25 15—5] 5 0 0|5

O second row of R

9 3 ] _ 3 0 l3 1
3 10 1 R33]l0 Rzs)
Q third column of R:10 — 1 = R§3,i.e.,R33 =3
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Rank and matrix factorizations

Example

Q Let B ={by,..., b} € R™ with r = rank(A) be basis of range(4). Then each of the columns of A = [a4,a,, ..., a,] can be

expressed as linear combination of B:

ai = b1Ci1 + sziz + -+ bTCiT = [bli ""bT] B B

for some coefficients ¢;je Rwithi =1,..,n,j =1, ..,7.

Stacking these relations column by column —

las, ..., an] = [by, ..., br]
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Rank and matrix factorizations

Lemma

A matrix A € R™*" of rank r admits a factorization of the form

A= BCT, B € R™*T, C € R™T"

.|
| A |

We say that A has low rank if rank(4) « m,n.

Illustration of low—rank factorization:

BCT
#entries ] mn ] mr + nr

O Generically (and in most applications), A has full rank, that is, rank(A) = min{m, n}.
O Aim instead at approximating A by a law—rank matrix.
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